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S O L U T I O N  O F  G R I N B E R G  A N D  C H E K M A R E V A ' S  

F I R S T  I N T E G R A L  E Q U A T I O N  U S I N G  A N  

A S Y M P T O T I C  S E R I E S  I N  A S M A L L  P A R A M E T E R  

T H A T  I S  P R E S E N T  

L. 1~. Rikenglaz UDC 53:51 

A method is suggested for constructing the terms in an asymptotic series in a small parameterkt when seeking 

the position of the phase front y(3) in the Stefan boundary-value problem of the first kind for a semi-infinite 

medium that is at the phase transition temperature at the initial moment. 

1. The  nonlinear integral equations obtained in [1 ] for determining the position of the phase front ~(t) in 

Stefan's problem for a semi-infinite body x >__ 0 that is at the temperature of the phase transition T(x, 0) = 0 at 

the time t = 0 will be referred to as Grinberg and Chermareva's  first, second, and third integral equations, 

respectively, for boundary  conditions of the first, second, and third kind at x -- 0. 

We use to, xo = at 2, TO to denote the characteristic time, coordinate, and temperature (a is the thermal 

diffusivity of the medium) and we introduce the dimensionless time r = t/to, the phase front coordinate y(T) = 

~(t)/xo,  and the temperature  of the boundary u0(3) -- T(0, T)/To. In terms of these variables it is convenient to 

write Grinberg and Chekmareva 's  first integral equation, bearing in mind further  transformations in the form 

exp ( -  p3) {ch [ p y (3) 1 - 1} aT = 2/~ 2 Ûo (p) .  (1) 
1/2 

0 

Here uo(p) is the Laplace transform of uo(3), and/~ = (cTo/2L)1/z is a dimensionless parameter.  The  volumetric 

specific heat and the latent heat of melting will be denoted by c and L. 
/ x  

It is unlikely that nonlinear integral equation (1) has an exact solution for an arbi t rary function uo(p). 

However, when the condition/z << 1 is satisfied, a solution of Eq.(1) can be found in the general case in the form 

of an asymptotic series in/~. It should be noted that in some cases it is possible to sum this series and thereby find 

an exact solution. 
The  condition # << 1 is equivalent to satisfaction of the condition of smallness of the volumetric energy 

- cTo of heating from the initial temperature to the maximum temperature TO relative to the volumetric latent heat 

of melting L. 
2. To save space, we will use the notation s = pl/2, y = y(3, At), F =- F(3, s, At) -- ch(sy) - 1, and we seek 

the functions y and F as power series in/~, assuming that differentiation with respect to/z and integration with 

the weight factor exp ( -p3 )  with respect to 3 are valid for these series: 

k k 

Y =  -~. Yk, F =  , Yk= Y (3 , s) , F k = F k (z , s ) .  (2) 
k = l  k = 2  " 

In writting these series, we took into account that y(3, 0) =- F(3, s, 0) = F (1) (3, s, 0) --- 0. Here and in the following 

the expression v (k) means the k-th derivative of the function v with respect to At. 

It is evident that 
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Y k = y ( k ) ( r '  0 ) ,  F k = F  (k)(r ,  s ,  0).  (3) 

3. It will be shown how y/r can be found successively for k = 1, 2 . . . . .  To do this, the second of the series 

in formula (2) will be substituted in Eq. (1), and terms with equal powers of/a will be equated. This leads to an 

infinite system of integral equations for determination of Yk (r): 

exp ( -  pr) F z ( r ,  s) dr = 4 u 0 (p),  
0 

(4) 

e x p ( - p r )  F k ( r ,  s) dr = O, k = 3 , 4 . . . .  (5) 
o 

Now F k will be expressed in terms of Yk. It is obvious that for k _ 1 F (k) can be written as 

Therefore, 

F(k)=fkCh(sy)  + V/k sh (sy) , fk = fk (r , s ,  p )  , 

~)k -= ~k (2", s ,  f l ) ,  f l  =- 0 ,  ~1 = sy .  

F, = F (e) (r ,  s ,  0 ) =  fe (r,  s ,  0). 

To determine fk from recurrence formulas, expression (6) will be differentiated with respect to/~: 

F(k+l) = [f(kl)+ sy (1) ~Pk]Ch(sy )+  [~(kl)+ s y ( 1 ) f k ] S h ( s y  ) --_ 

= fk+l ch (sy)  + "~k+l sh ( s y ) ,  

whence it follows that 

fk+l =f(k 1) + sy(1)~k' ~k+l  = ~ 1 )  + sy(1)fk. 

From formulas (7) and (8) F2, F3, etc. can be easily found in succession. 
The expressions for the three first values of F k will be given, omitting simple calculations: 

2 2 4  
F2 = PYI (r) ,  F3 = 3pYl 0:) Y2 (r) ,  F4 = P Yl (Q + 4Y1 (Q Y3 (Q" 

Substitution of Fk from formula (9) into integral equations (4) and (5) yields 

A 

2 4U0 (P) 
J exp ( -  pT) Yl 0-) dr - - -  , 
o P 

(6) 

(7) 

(8) 

(9) 

(lo) 

7 exp ( -  pQ Yl 0:) Y2 (z) d'~ = 0 ,  
0 

( l l )  

exp ( -  pr) [py4 (z) ~ 4y 1 (r) Y3 (r) ] dr = 0 ,  
0 

whence it is readily determined in succession that 

(12) 
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yl 0 )  = 2 u0 (r) aT , 
o 

1 d . ( 1 3 )  
Y2(Q -=0 ,  Y 3 ( r ) -  3 d r  [Yl (z)]3 

Substitution of y~ from formula (13) into series (2) for y(r) gives with accuracy to terms of fourth order in p 

y ( r ) = p l y l ( r )  1 / 2 2  ] (14) - Yl 0:)Yl (7:) + O (f14). 

4. To investigate the character of convergence of the series of y(r) in p,  we will consider the well-known 

example of the exact solution of Stefan's problem for u0(r) - 1 ,  which in the present notation has the form 

y (r) = 2fl v~-, (15) 

where fl is the root of the transcendental equation 

fl exp fix ~ exp ( -  z 2) dz - f12 
0 

= 0 .  

The derivative of the left-hand side with respect to fl for fl =/~ -- 0 equals zero. Therefore fl is not an 
analytical function of/~. However, for/~ << 1, it is possible to obtain an asymptotic expansion of fl in/z. With accuracy 

to terms of order O(p4), we have 

3 
= ,tt - -~- + O (]24), 

whence, using formula (12), we obtain 

y (z) = 2/x 1 -- V~- + O Or4) .  

On the other hand, it follows from formulas (13) that Yl (r) = 2T 1/2, yx(r) = 0, and y3(T) = -4T 1/2. Substituting the 

values of Yl, Y2, Ya into series (2) for y(r), we obtain with accuracy to terms of order O~4) :  

y ( r ) = 2 / ~  ( 1 _ 3 / 2 ) v , ~ - + O ~ 4 ) .  (17) 

The agreement between formulas (16) and (17) proves that the expansion of y(~) in # 

series. 

is an asymptotic 

In conclusion, it should be noted that the method suggested for solution of nonlinear equation (1) in the 
A 

case of the small parameter  p can easily be extended to the case where uo(p) depends on/~ in such a way that the 

function uo(P) could be expanded in an analytical or asymptotical series in p. 
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