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SOLUTION OF GRINBERG AND CHEKMAREVA’S
FIRST INTEGRAL EQUATION USING AN
ASYMPTOTIC SERIES IN A SMALL PARAMETER
THAT IS PRESENT

L. E. Rikenglaz UDC 53:51

A method is suggested for constructing the terms in an asymptotic series in a small parameter u when seeking
the position of the phase front y(t) in the Stefan boundary-value problem of the first kind for a semi-infinite
medium that is at the phase transition temperature at the initial moment.

1. The nonlinear integral equations obtained in [1] for determining the position of the phase front £(?) in
Stefan’s problem for a semi-infinite body x = 0 that is at the temperature of the phase transition T(x, 0) = 0 at
the time ¢ = 0 will be referred to as Grinberg and Chermareva’s first, second, and third integral equations,
respectively, for boundary conditions of the first, second, and third kind at x = 0.

We use fp, xp = at%, To to denote the characteristic time, coordinate, and temperature (a is the thermal
diffusivity of the medium) and we introduce the dimensionless time 7 = #/fy, the phase front coordinate y(r) =
E@/xp, and the temperature of the boundary u(z) = T(0, 7)/Tp. In terms of these variables it is convenient to
write Grinberg and Chekmareva’s first integral equation, bearing in mind further transformations in the form

J exp (= pr) {eh 02y (1 = 1} dr = 2475y (). M)
0

1/2 is a dimensionless parameter. The volumetric

Here 20<p> is the Laplace transform of uy(r), and u = (cTo/2L)
specific heat and the latent heat of melting will be denoted by ¢ and L.

It is unlikely that nonlinear integral equation (1) has an exact solution for an arbitrary function Zt\o(p).
However, when the condition u << 1 is satisfied, a solution of Eq.(1) can be found in the general case in the form
of an asymptotic series in u. It should be noted that in some cases it is possible to sum this series and thereby find
an exact solution.

The condition ¢ << 1 is equivalent to satisfaction of the condition of smallness of the volumetric energy
— ¢Tg of heating from the initial temperature to the maximum temperature T relative to the volumetric latent heat
of melting L.

2. To save space, we will use the notation s = p1 2, y=y@,w, F = F(, s, ) = ch(sy) — 1, and we seek
the functions y and F as power series in x4, assuming that differentiation with respect to 4 and integration with
the weight factor exp(—pr) with respect to t are valid for these series:
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In writting these series, we took into account that y(z, 0) = F(z, s, 0) = Fo (z, s, 0) = 0. Here and in the following
the expression v*) means the k-th derivative of the function v with respect to u.
It is evident that
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w=y0a@ 0, F=Fq, s, 0.

&)

3. It will be shown how y;(r) can be found successively for k =1, 2, ... . To do this, the second of the series
in formula (2) will be substituted in Eq. (1), and terms with equal powers of 4 will be equated. This leads to an

infinite system of integral equations for determination of y; ():

{exp(—pr)Fz(t, s)dr=4i¢\0(p),

o0

Jexp(—pr) Fp(r, s)dr=0, k=3,4,. .
0

Now Fy will be expressed in terms of y;. It is obvious that for £ = 1 F® can be written as

k
F()szCh(Sy)+'/)kSh(SY)y fo=f@, s, B,
V=Y (T, s, 0, f1=0, y =9y
Therefore,

Fk=F(k)(r, s, 0)=f(r, s, 0).

To determine f; from recurrence formulas, expression (6) will be differentiated with respect to u:

F(kﬂ) = [f,(cl) + sy(l) Yelch (sy) + [1/),((1) + sy(l)fk] sh (sy) =
= fir1 Ch (8Y) + Yy Sh (sY),
whence it follows that
1 1 1 1
S =10+ 9V v, v =vf) + 90 1.

From formulas (7) and (8) F; Fj3, etc. can be easily found in succession.
The expressions for the three first values of F; will be given, omitting simple calculations:

2 2 4
Fa=pyi (), F3=3pym (n@, Fi=py @) +4 @)y@).
Substitution of F; from formula (9) into integral equations (4) and (5) yields

42y (p)

J exp (= pr) i (@) dr = »
0

Z exp(—pr) y (V) y, (1) dr = 0,

[ exp (= p) [Pyt () = 4y, (3) y3 (1) 1dr = 0,

whence it is readily determined in succession that
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yl(r)=2':_guo(t)dr} , »(@m=0, y3(7)=“%%[y1(r)]3- (13)

Substitution of y; from formula (13) into series (2) for y(r) gives with accuracy to terms of fourth order in u

y®=ﬂ[nm—%ﬁﬁmna4+ow%. 1

4. To investigate the character of convergence of the series of y(r) in u, we will consider the well-known
example of the exact solution of Stefan’s problem for up(r) =1, which in the present notation has the form

y(@)=28V7, (15)

where § is the root of the transcendental equation
2 2 2
BexpB” [ exp(~2)dz—u"=0.
0

The derivative of the left-hand side with respect to 3 for f = u = 0 equals zero. Therefore § is not an
analytical function of . However, for u << 1, it is possible to obtain an asymptotic expansion of 8 in x. With accuracy
to terms of order O(u4), we have

3
4
p=n-F+ow),
whence, using formula (12), we obtain
2

ym=m%1—%]ﬁ+0wﬁl (16)

On the other hand, it follows from formulas (13) that y; (z) = 2!/ 2, »(r) =0, and y3(x) = 47172, Substituting the
values of yy, y2, y3 into series (2) for y(r), we obtain with accuracy to terms of order O(,u4):

ym=m{1—§f)ﬁ+owﬁ. a7

The agreement between formulas (16) and (17) proves that the expansion of y(r) in # is an asymptotic
series.

In conclusion, it should be noted that the method suggested for solution of nonlinear equation (1) in the
case of the small parameter u can easily be extended to the case where 20 (p) depends on u in such a way that the
function it\o(p) could be expanded in an analytical or asymptotical series in u.
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